About

I lead Force Five Partners, a marketing analytics consulting firm (bio). I've been writing here about marketing, technology, e-business, and analytics since 2003 (blog name explained).

Email or follow me:

86 posts categorized "Analytics"

July 21, 2014

"Lionel Messi Is Impossible." How About Your Salespeople? @skepticalsports #Analytics

Warning: due to author sloth, this post is dated.  Most of you have likely moved on with your lives.  Me, my Heart Is Full for los albicelestes, despite a disappointing outcome, but I still have a lingering case of futbolytics to get over.

Fivethirtyeight.com contributor Benjamin Morris had a fascinating article a couple of weeks ago that examined Argentine footballer Lionel Messi's play in recent years.  Until this year's World Cup of course, Messi had come under some criticism for, against the backdrop of his ethereal play for Barcelona, under-delivering for Argentina in recent years.  The article -- warning, 4600+ words long, with charts and videos and hyperlinks and footnotes, as in "Ask not, Bill Simmons, for whom the bell tolls..." -- explains persuasively that Messi is an outlier among outliers, even in his performances for the Argentine national team.  

The analysis of his shooting is fascinating enough.  But what really caught my attention, was the analysis of his passing and other influences on the game. In particular, here's a fascinating chart from Morris' article that makes the point neatly.

My friends at the multi-channel marketing attribution analytics firm Visual IQ are fond of a soccer metaphor to explain what they do.  "Giving all the conversion credit to the last-touched marketing channel is like giving Mario Götze all the credit for his goal in the 113th minute of the World Cup final," they say (with a zesty cruelty that borders on the sociopathic).

In the sales world, it's a holy grail to get to this kind of dynamic, or even an understanding of where on Morris' chart members of your team would be. It can be a thorny path to get there though, because unlike in Messi's world, a helping hand in sales can be harder to observe, and even if you try to measure it, often it can be (will be) gamed mercilessly and unhelpfully.

One way you can track this sort of thing is through online and offline knowledge sharing by members of your team.  Winning proposals, presentations, good answers to FAQs, and then views of these by others can all be tracked in relatively painless, game-free ways. A number of years ago when I worked at ArsDigita, we worked with Siemens to build ShareNet, a global sales and marketing knowledge management system that for many years was a poster child for applications of its kind (see here for the HBR case study).   The secret behind Siemens' success with ShareNet was the flexibility with which it could adapt what was captured, and how, to make it easy for people to contribute and consume.  Today, fortunately, the tools and costs for building capabilities like this are far more accessible. And now as attribution analysis moves closer to the center of the marketing analytics agenda, we have the opportunity to put the resulting data to work in a way that moves the dominant motivation for this kind of behavior beyond altruism to proper credit.

So if you'd like to improve your organization's gol-orientation, perhaps it's time to compile and publish your own assist chart?

May 29, 2014

Mary Meeker's @KPCB #InternetTrends Report: Critiquing The "Share of Time, Share of Money" Analysis

Mary Meeker's annual Internet Trends report is out.  It's a very helpful survey and synthesis of what's going on, as ever, all 164 pages of it. But for the past few years it's contained a bit of analysis that's bugged me.

Page 15 of the report (embedded below) is titled "Remain Optimistic About Mobile Ad Spend Growth... Print Remains Way Over-Indexed."  The main chart on the page compares the percentage of time people spend in different media with the percentage of advertising budgets that are spent in those media.  The assumption is that percentage of time and percentage of budget should roughly be equal for each medium.  Thus Meeker concludes that if -- as is the case for mobile -- the percentage of user time spent is greater than budget going there, then more ad dollars (as a percent of total) will flow to that medium, and vice versa (hence her point about print).

I can think of  demand-side, supply-side, and market maturity reasons that this equivalency thesis would break down, which also suggest directions for improving the analysis.  

On the demand side, different media may have different mixes of people, with different demographic characteristics.  For financial services advertisers, print users skew older -- and thus have more money, on average, making the potential value to advertisers of each minute of time spent by the average user there more valuable.  Different media may also have different advertising engagement power.  For example, in mobile, in either highly task-focused use cases or in distracted, skimming/ snacking ones, ads may be either invisible or intrusive, diminishing their relative impact (either in terms of direct interaction or view-through stimulation). By contrast, deeper lean-back-style engagement with TV, with more room for an ad to maneuver, might if the ad is good make a bigger impression. I wonder if there's also a reach premium at work.  Advertisers like to find the most efficient medium, but they also need to reach a large enough number of folks to execute campaigns effectively.  TV and print are more reach-oriented media, in general.

On the supply side, different media have different power distributions of the content they can offer, and different barriers to entry that can affect pricing.  On TV and in print, prime ad spots are more limited, so simple supply and demand dynamics drive up prices for the best spots beyond what the equivalency idea might suggest.  

In favor of Meeker's thesis, though representing another short term brake on it, is yet another factor she doesn't speak to directly. This is the relative maturity of the markets and buying processes for different media, and the experience of the participants in those markets.  A more mature, well-trafficked market, with well-understood dynamics, and lots of liquidity (think the ability for agencies and media brokers to resell time in TV's spot markets, for example), will, at the margin, attract and retain dollars, in particular while the true value of different media remain elusive. (This of course is one reason why attribution analysis is so hot, as evidenced by Google's and AOL Platform's recent acquisitions in this space.)  I say in favor, because as mobile ad markets mature over time, this disadvantage will erode.

So for advertisers, agency and media execs, entrepreneurs, and investors looking to play the arbitrage game at the edges of Meeker's observation, the question is, what adjustment factors for demand, supply, and market maturity would you apply this year and next?  It's not an idle question: tons of advertisers' media plans and publishers' business plans ride on these assumptions about how much money is going to come to or go away from them, and Meeker's report is an influential input into these plans in many cases.

A tactical limitation of Meeker's analysis is that while she suggests the overall potential shift in relative allocation of ad dollars (her slide suggests a "~$30B+" digital advertising growth opportunity in the USA alone - up from $20B last year*), she doesn't suggest a timescale and trendline for the pace with which we'll get there. One way to come at this is to look at the last 3-4 annual presentations she's made, and see how the relationships she's observed have changed over time.  Interestingly, in her 2013 report using 2012 data, on page 5, 12% of time is spent on mobile devices, and 3% of ad dollars are going there, for a 4x difference in percentages. In the 2014 report using 2013 data, 20% of time is spent on mobile, and 5% of media dollars are going there -- again, a 4x relationship.  

So, if the equivalency zeitgeist is at work, for the moment it may be stuck in a phone booth. But in the end I'm reminded of the futurist Roy Amara's saying: "We tend to overestimate the effect of a technology in the short term and underestimate its effect in the long term."  Plus let's not forget new technologies (Glass, Occulus Rift, both portable and  large/immersive) that will further jumble relevant media categories in years to come.

(*Emarketer seems to think we'll hit the $30B mobile advertising run rate sometime during 2016-2017.)

 

April 16, 2014

My New Book: #Marketing and #Sales #Analytics

I've written a second book.  It's called Marketing and Sales Analytics: Proven Techniques and Powerful Applications From Industry Leaders (so named for SEO purposes).  Pearson is publishing it (special thanks to Judah Phillips, author of Building A Digital Analytics Organization, for introducing me to Jeanne Glasser at Pearson).  The ebook version will be available on May 23, and the print version will come out June 23.

The book examines how to focus, build, and manage analytics capabilities related to sales and marketing.  It's aimed at C-level executives who are trying to take advantage of these capabilities, as well as other senior executives directly responsible for building and running these groups. It synthesizes interviews with 15 senior executives at a variety of firms across a number of industries, including Abbott, La-Z-Boy, HSN, Condé Nast, Harrah's, Aetna, The Hartford, Bed Bath & Beyond, Paramount Pictures, Wayfair, Harvard University, TIAA-CREF, Talbots, and Lenovo. My friend and former boss Bob Lord, author of Converge was kind enough to write the foreword.

I'm in the final editing stages. More to follow soon, including content, excerpts, nice things people have said about it, slideshows, articles, lunch talk...

January 17, 2014

Culturelytics

I'm working on a book. It will be titled Marketing and Sales Analytics: Powerful Lessons from Leading Practitioners. My first book, Pragmalytics, described some lessons I'd learned; this book extends those lessons with interviews with more than a dozen senior executives grappling with building and applying analytics capabilities in their companies. Pearson's agreed to publish it, and it will be out this spring. Right now I'm in the middle of the agony of writing it. Thank you Stephen Pressfield (and thanks to my wife Nan for introducing us).

A common denominator in the conversations I've been having is the importance of culture. Culture makes building an analytics capability possible. In some cases, pressure for culture change comes outside-in: external conditions become so dire that a firm must embrace data-driven objectivity. In others, the pressure comes top-down: senior leadership embodies it, leads by example, and is willing to re-staff the firm in its image. But what do you do when the wolf's not quite at the door, or when it makes more sense (hopefully, your situation) to try to build the capability largely within the team you have than to make wholesale changes?

There are a lot of models for understanding culture and how to change it. Here's a caveman version (informed by behavioral psychology principles, and small enough to remember). Culture is a collection of values -- beliefs -- about what works, and doesn't: what behaviors lead to good outcomes for customers, shareholders, and employees; and, what behaviors are either ignored or punished.

Photo (16)

Values, in turn, are developed through chances individuals have to try target behaviors, the consequences of those experiences, and how effectively those chances and their consequences are communicated to other people working in the organization.

Photo (15)

Chances are to  culture change as reps (repetitions) are to sports. If you want to drive change, to get better, you need more of them. Remember that not all reps come in games. Test programs can support culture change the same way practices work for teams. Also, courage is a muscle: to bench press 500 pounds once, start with one pushup, then ten, and so on. If you want your marketing team to get comfortable conceiving and executing bigger and bolder bets, start by carving out, frequently, many small test cells in your programs. Then, add weight: define and bound dimensions and ranges for experimentation within those cells that don't just have limits, but also minimums for departure from the norm. If you can't agree on exactly what part of your marketing mix needs the most attention, don't study it forever. A few pushups won't hurt, even if it's your belly that needs the attention. A habit is easier to re-focus than it is to start.

Consequences need to be both visible and meaningful. Visible means good feedback loops to understand the outcome of the chance taken. Meaningful can run to more pay and promotion of course, but also to opportunity and recognition. And don't forget: a sense of impact and accomplishment -- of making a difference -- can be the most powerful reinforcer of all. For this reason, a high density of chances with short, visible feedback loops becomes really important to your change strategy.

Communication magnifies and sustains the impact of chances taken and their consequences. If you speak up at a sales meeting, the client says Good Point, and I later praise you for that, the culture change impact is X. If I then relate that story to everyone at the next sales team meeting, the impact is X * 10 others there. If we write down that behavior in the firm's sales training program as a good model to follow, the impact is X * 100 others who will go through that program.

Summing up, here's a simple set of questions to ask for managing culture change:

  • What specific values does our culture consist of?
  • How strongly held are these values: how well-reinforced have they been by chances, consequences, and communication?
  • What values do I need to keep / change / drop / add?
  • In light of the pre-existing value topology -- fancy way of saying, the values already out there and their relative strength -- what specific chances, consequences, communication program will I need to effect the necessary keeps / changes / drops / adds to the value set?
  • How can my marketing and sales programs incorporate a greater number of formal and informal tests? How quickly and frequently can we execute them?
  • What dimensions (for example, pricing, visual design, messaging style and content, etc.) and "min-max" ranges on those dimensions should I set? 
  • How clearly and quickly can we see the results of these tests?
  • What pay, promotion, opportunity, and recognition implications can I associate with each test?
  • What mechanisms are available / should I use to communicate tests and results?

Ask these questions daily, tote up the score -- chances taken, consequences realized, communications executed -- weekly or monthly. Track the trend, slice the numbers by the behaviors and people you're trying to influence, and the consequences and communications that apply. Don't forget to keep culture change in context: frame it with the business results culture is supposed to serve. Re-focus, then wash, rinse, repeat.  Very soon you'll have a clear view of and strong grip on culture change in your organization.

September 11, 2013

Book Review: "Building A Digital Analytics Organization" by @Judah Phillips #analytics

I originally got to know Judah Phillips through Web Analytics Wednesdays events he organized, and in recent years he's kindly participated on panels I've moderated and has been helpful to my own writing and publishing efforts. I've even partnered with some of the excellent professionals who have worked for him. So while I'm biased as the beneficiary of his wisdom and support, I can also vouch first-hand for the depth and credibility of his advice. In short, in an increasingly hype-filled category, Judah is the real deal, and this makes "Building The Digital Analytics Organization" a book to take seriously.

For me the book was useful on three levels. One, it's a foundational text for framing how to come at business analysis and reporting. Specifically, he presents an Analytics Value Chain that reminds us to bookend our analytic efforts per se with a clear set of objectives and actions, an orientation that's sadly missing in many balkanized corporate environments. Two, it's a blueprint for your own organization-building efforts. He really covers the waterfront, from how to approach analysis, to different kinds of analysis you can pursue, to how to organize the function and manage its relationships with other groups that play important supporting roles. For me, Chapter 6, "Defining, Planning, Collecting, and Governing Data in Digital Analytics" is an especially useful section. In it, he presents a very clear, straightforward structure for how you should set up and run these crucial functions. Finally, three, Judah offers a strong point of view on certain decisions. For example, I read him to advocate for a strongly centralized digital analytics function, rooted in the "business" side of the house, to make sure that you have both critical mass for these crucial skills, as well as proximity to the decisions they need to support.

These three uses had me scribbling in the margins and dog-earing extensively. But if you still need one more reason to pull the trigger, it helps that the book is very up-to-date and has a final chapter that looks forward very thoughtfully into how Judah expects what he describes as the "Analytical Economy" to evolve. This section is both a helpful survey of the different capabilities that will shape this future as well as an exploration of the issues these capabilities and associated trends will raise, in particular as they relate to privacy. It's a valuable checklist, to make sure you're not just building for today, but for the next few years to come.

Here's the book and the review on Amazon.

September 01, 2013

#MITX Panel: Analytically Aligned Decision Making in the Multi-Agency Context

I moderated this panel at the Massachusetts Innovation and Technology Exchange's (mitx.org)"The Science of Marketing: Using Data & Analytics for Winning" summit on August 1, 2013.  Thanks to T. Rowe Price's Paul Musante, Visual IQ's Manu Mathew, iKnowtion's Don Ryan, and Google's Sonia Chung for participating!

 

June 16, 2013

Organizing for #Analytics - Seven Considerations

We're now in the blood-sugar-crash phase of the Analytics / Big Data hype cycle, where the gap between promise and reality is greatest.  Presenting symptoms of the gap include complaints about alignment, access to data, capacity to act on data-driven insights, and talent.  This September 2012 HBR blog post by Paul Barth and Randy Bean of NewVantage Partners underscores this with some interesting data.

Executives' anxiety about this gap is also at its peak.  Many of them turn to organization as their prime lever for solving things. A question I get a lot is "How should we organize our analytic capabilities?"  Related ones include "How centralized should they be?", and "What should be on the business side, and what belongs in IT?"  

This post suggests a few criteria for helping to answer these questions.  But first, I'd like to offer a principle for tackling this generally:

Think organization last, not first.

A corollary to this might be, "Role is as role does."  Too much attention today is paid to developing and organizing for analytic capability.  Not enough attention is paid to defining and managing a portfolio of important business opportunities that leverage this capability.  In our work with clients, we focus on building capability through practice and results.  Our litmus test for whether we're making progress is a rule we call "3-2-1": In each quarter, the portfolio of business opportunities we're supporting with analytic efforts has to yield at least three "news you can use" insights, two experiments based on these insights, and one "scaling" of prior experiments to "production", with commensurate results.  (The specific goals we set for each of these varies of course from situation to situation, but the approach is the same.)

Approaching things this way has several benefits:

  • You frame "Analytics" and "Big Data" requirements in terms of what you need to solve specific challenges relevant to you, not in terms of a vendor's list of features;
  • You stay focused on the result, and not the input, so you don't invest past the point of diminishing returns;
  • By keeping cycles short and accountable to this rule, you hedge execution risk and maximize learning;
  • Your talent recruitment, development, and organization are done in the context of explicit opportunities, and thus stay flexible and integrated around concrete business results and not abstract concepts for what you need;
  • The results-oriented management of the capability helps build confidence that the overall ROI expected will be achieved.  Momentum is strategic.

Now, two critiques that can be made of this approach are, first, that it's too ad hoc and therefore misses opportunities to leverage experience beyond each individual opportunity addressed, and second, that it ignores that most people are "tribal" and that their behaviors are shaped accordingly.  So once you've got a decent portfolio assembled and you're managing it along, here are some organizational considerations you can apply to help decide where folks should "live":

  • For the business opportunities you're faced with, how unique is "local knowledge" -- that is, intimate knowledge of the specific market dynamics or operational mechanics that generate the data and shape the necessary analytics -- to each of them?  The more so, the more it will make sense to place your analysts in the groups responsible for those areas.
  • To what extent does the type of analysis you are pursuing require a certain degree of critical mass? It's hard for a single person or even small groups to manage and mine a Big Data capability, and if you sprinkle Big Data analysts throughout your firm to support different groups, you overwhelm each of them and under-serve the opportunity. Plus, each of them ends up with different Hammers Looking For Nails based on the particular tools and techniques they learn, rather than picking the best ones for different jobs.
  • How important is enterprise leverage to the business case for your capability?  If it is, centralizing your analysts so that purchasing efficiencies and idea sharing and reuse are maximized will be more important.
  • Are you concerned about objectivity?  When analysts get embedded deeply with business teams, there's a risk they can "go native", either because they fall in love with the solutions they're part of developing, or because of pressure, subtle and otherwise, to prove these solutions work.  This phenomenon is well-documented in scientific fields, even with peer review, so it's certainly more problematic in business.  
  • Are you, for whatever reason, having trouble keeping your analysts and their efforts aligned with your key priorities? For example, if one group needs to quickly get a product into market to grab its share of a high-growth opportunity, and then evolve it from there, and your analysts work in a group whose norms and objectives are more about "perfect" than "good enough", you may need to move folks, or get different folks in place.
  • How's your analyst-marketer relationship? If they're talking and working together productively, and the interpersonal karma is good, you can worry less about whether their boxes on the chart are closer or further apart.
  • Finally, which of these four "C's" describes the behavior you're trying to encourage: communication, coordination, collaboration, or control?  At the communication end of the spectrum, you just want folks to be aware of each other's efforts.  Coordination, for example, can mean "Hey, I'll be running my test Tuesday, so could you wait until Wednesday?"  Collaboration may require formal re-grouping, but it might only be temporary.  Control can be necessary for effective execution of complex projects.  The more analytic success relies on such control, rather than being satisfied by the "lesser" C's, the more you may solve for that with organization.

In our work we'll typically apply these criteria using scoresheets to evaluate either or both the specific business challenges we're solving for or the organizational models we're evaluating as possible options.  Sometimes we just use "high-medium-low" assessments, and other times we'll do the math to help us stay objective about different ways to go.  The main things are to keep attention to organization in balance with attention to progress, and to keep discussions about organization focused on the needs of the business, rather than allowing them to devolve into proxy battles for executive power and influence.

June 12, 2013

Privacy vs. Security Survey Interim Results #prism #analytics

This week, one of the big news items is the disclosure of the NSA's Prism program that collects all sorts of our electronic communications, to help identify terrorists and prevent attacks.

I was struck by three things.  One is the recency bias in the outrage expressed by many people.  Not sixty days ago we were all horrified at the news of the Boston Marathon bombings.  Another is the polarization of the debate.  Consider the contrast the Hullabaloo blog draws between "insurrectionists" and "institutionalists".  The third was the superficial treatment of the tradeoffs folks would be willing to make.  Yesterday the New York Times Caucus blog published the results of a survey that suggested most folks are fence-sitters on the tradeoff between privacy and security, but left it more or less at that.  (The Onion wasn't far behind with a perfect send-up of the ambivalence we feel.)

In sum, biased decision-making based on excessively simplified choices using limited data.  Not helpful. Better would be a more nuanced examination of the tradeoff between the privacy you would be willing to give up for the potential lives saved.  I see this opportunity to improve decision making alot, and I thought this would be an interesting example to illustrate how framing and informing an issue differently can help.  So I posted this survey: https://t.co/et0Bs0OrKF

Here are some early results from twelve folks who kindly took it (please feel free to add your answers, if I get enough more I'll update the results):

Privacy vs security

(Each axis is a seven point scale, 1 at lowest and 7 at highest.  Bubble size = # of respondents who provided that tradeoff as their answer.  No bubble / just label = 1 respondent, biggest bubble at lower right = 3 respondents.)

Interesting distribution, tending slightly toward folks valuing (their own) privacy over (other people's) security.

Now my friend and business school classmate Sam Kinney suggested this tradeoff was a false choice.  I disagreed with him. But the exchange did get me to think a bit further.  More data isn't necessarily linear in its benefits.  It could have diminishing returns of course (as I argued in Pragmalytics) but it could also have increasing value as the incremental data might fill in a puzzle or help to make a connection.  While that relationship between data and safety is hard for me to process, the government might help its case by being less deceptive and more transparent about what it's collecting, and its relative benefits.  It might do this, if not for principle, then for the practical value of controlling the terms of the debate when, as David Brooks wrote so brilliantly this week, an increasingly anomic society cultivates Edward Snowdens at an accelerating clip.

I'm skeptical about the value of this data for identifying terrorists and preventing their attacks.  Any competent terrorist network will use burner phones, run its own email servers, and communicate in code.  But maybe the data surveillance program has value because it raises the bar to this level of infrastructure and process, and thus makes it harder for such networks to operate.

I'm not concerned about the use of my data for security purposes, especially not if it can save innocent boys and girls from losing limbs at the hands of sick whackos.  I am really concerned it might get reused for other purposes in ways I don't approve, or by folks whose motives I don't approve, so I'm sure we could improve oversight, not only for what data gets used how, but of the vast, outsourced, increasingly unaccountable government we have in place. But right now, against the broader backdrop of gridlock on essentially any important public issue, I just think the debate needs to get more utilitarian, and less political and ideological.  And, I think analytically-inclined folks can play a productive role in making this happen.

(Thanks to @zimbalist and @perryhewitt for steering me to some great links, and to Sam for pushing my thinking.)

May 20, 2013

"How to Engage Consumers in a Multi-Platform World?" See you May 22 @APPNATION bootcamp panel in NYC

Sponsorpay's Global Sales SVP Andy Bibby kindly asked me to join his NYC Internet Week APPNATION panel on Wednesday, May 22 2:15-3p at 82 Mercer.  Hope to see you there, watch this space for a recap of the conversation.

May 10, 2013

Book Review: Converge by @rwlord and @rvelez #convergebook

I just finished reading Converge, the new book on integrating technology, creativity, and media by Razorfish CEO Bob Lord and his colleague Ray Velez, the firm’s CTO.  (Full disclosure: I’ve known Bob as a colleague, former boss, and friend for more than twenty years and I’m a proud Razorfish alum from a decade ago.)

Reflecting on the book I’m reminded of the novelist William Gibson’s famous comment in a 2003 Economist interview that “The future’s already here, it’s just not evenly distributed.”  In this case, the near-perfect perch that two already-smart guys have on the Digital Revolution and its impact on global brands has provided them a view of a new reality most of the rest of us perceive only dimly.

So what is this emerging reality?  Somewhere along the line in my business education I heard the phrase, “A brand is a promise.”  Bob and Ray now say, “The brand is a service.”  In virtually all businesses that touch end consumers, and extending well into relevant supply chains, information technology has now made it possible to turn what used to be communication media into elements of the actual fulfillment of whatever product or service the firm provides.  

One example they point to is Tesco’s virtual store format, in which images of stocked store shelves are projected on the wall of, say, a train station, and commuters can snap the QR codes on the yogurt or quarts of milk displayed and have their order delivered to their homes by the time they arrive there: Tesco’s turned the billboard into your cupboard.  Another example they cite is Audi City, the Kinnect-powered configurator experience through which you can explore and order the Audi of your dreams.  As the authors say, “marketing is commerce, and commerce is marketing.”

But Bob and Ray don’t just describe, they also prescribe.  I’ll leave you to read the specific suggestions, which aren’t necessarily new.  What is fresh here is the compelling case they make for them; for example, their point-by-point case for leveraging the public cloud is very persuasive, even for the most security-conscious CIO.  Also useful is their summary of the Agile method, and of how they’ve applied it for their clients.

Looking more deeply, the book isn’t just another surf on the zeitgeist, but is theoretically well-grounded.  At one point early on, they say, “The villain in this book is the silo.”  On reading this (nicely turned phrase), I was reminded of the “experience curve” business strategy concept I learned at Bain & Company many years ago.  The experience curve, based on the idea that the more you make and sell of something, the better you (should) get at it, describes a fairly predictable mathematical relationship between experience and cost, and therefore between relative market share and profit margins.  One of the ways you can maximize experience is through functional specialization, which of course has the side effect of encouraging the development of organizational silos.  A hidden assumption in this strategy is that customer needs and associated attention spans stay pinned down and stable long enough to achieve experience-driven profitable ways to serve them.  But in today’s super-fragmented, hyper-connected, kaleidoscopic marketplace, this assumption breaks down, and the way to compete shifts from capturing experience through specialization, to generating experience “at-bats” through speedy iteration, innovation, and execution.  And this latter competitive mode relies more on the kind of cross-disciplinary integration that Bob and Ray describe so richly.

The book is a quick, engaging read, full of good stories drawn from their extensive experiences with blue-chip brands and interesting upstarts, and with some useful bits of historical analysis that frame their arguments well (in particular, I Iiked their exposition of the television upfront).  But maybe the best thing I can say about it is that it encouraged me to push harder and faster to stay in front of the future that’s already here.  Or, as a friend says, “We gotta get with the ‘90’s, they’re almost over!”

(See this review and buy the book on Amazon.com)


Search

Books by
Cesar Brea