About

Cesar A. Brea bio at Force Five Partners

     

Subscribe

Get new posts by email:

RSS

Subscribe via
Google Currents

16 posts categorized "E-Learning"

May 19, 2013

@nathanheller #MOOCs in The New Yorker: You Don't Need A Weatherman

The May 20th 2013 edition of The New Yorker has an article by Vogue writer Nathan Heller on Massive Online Open Courses (MOOCs) titled "Laptop U: Has the future of college moved online?"  The author explores, or at least raises, a number of related questions.  How (well) does the traditional offline learning experience transfer online?  Is the online learning experience more or less effective than the traditional one? (By what standard? For what material?  What is gained and lost?)  What will MOOCs mean for different colleges and universities, and their faculties?  How will the MOOC revolution be funded?  (In particular, what revenue model will emerge?)

Having worked a lot in the sector, for both public and private university clients, developing everything from technology, to online-enabled programs themselves, to analytic approaches, and even on marketing and promotion, the article was a good prompt for me to try to boil out some ways to think about answering these questions.

The article focuses almost exclusively on Harvard and EdX, the 12-school joint venture through which it's pursuing MOOCs.  Obviously this skews the evaluation.  Heller writes:

Education is a curiously alchemical process. Its vicissitudes are hard to isolate.  Why do some students retain what they learned in a course for years, while others lose it through the other ear over their summer breaks?  Is the fact that Bill Gates and Mark Zuckerberg dropped out of Harvard to revolutionize the tech industry a sign that their Harvard educations worked, or that they failed?  The answer matters, because the mechanism by which conveyed knowledge blooms into an education is the standard by which MOOCs will either enrich teaching in this country or deplete it.

For me, the first step to boiling things out is to define what we mean by -- and want from -- an "education".  So, let's try to unpack why people go to college.  In most cases, Reason One is that you need a degree to get any sort of decent job.  Reason Two is to plug into a network of people -- fellow students, alumni, faculty -- that provide you a life-long community.  Of course you need a professional community for that Job thing, but also because in an otherwise anomic society you need an archipelago to seed friendships, companionships, and self-definition (or at least, as scaffolding for your personal brand: as one junior I heard on a recent college visit put it memorably, "Being here is part of the personal narrative I'm building.")  Reason Three -- firmly third -- is to get an "education" in the sense that Heller describes.  (Apropos: check this recording of David Foster Wallace's 2005 commencement address at Kenyon College.) 

Next, this hierarchy of needs then gives us a way to evaluate the prospects for MOOCs.

If organization X can produce graduates demonstrably better qualified (through objective testing, portfolios of work, and experience) to do job Y, at a lower cost, then it will thrive.  If organization X can do this better and cheaper by offering and/or curating/ aggregating MOOCs, then MOOCs will thrive.  If a MOOC can demonstrate an adequately superior result / contribution to the end outcome, and do it inexpensively enough to hold its place in the curriculum, and do it often enough that its edge becomes a self-fulfilling prophecy -- a brand, in other words -- then it will crowd out its competitors, as surely as one plant shuts out the sunlight to another.  Anyone care to bet against Georgia Tech's new $7K Master's in Computer Science?

If a MOOC-mediated social experience can connect you to a Club You Want To Be A Member Of, you will pay for that.  And if a Club That Would Have You As A Member can attract you to its clubhouse with MOOCs, then MOOCs will line the shelves of its bar.  The winning MOOC cocktails will be the ones that best produce the desired social outcomes, with the greatest number of satisfying connections.

Finally, learning is as much about the frame of mind of the student as it is about the quality of the teacher.  If through the MOOC the student is able to choose a better time to engage, and can manage better the pace of the delivery of the subject matter, then the MOOC wins.

Beyond general prospects, as you consider these principles, it becomes clear that it's less about whether MOOCs win, but which ones, for what and for whom, and how.  

The more objective and standardized -- and thus measurable and comparable -- the learning outcome and the standard of achievement, the greater the potential for a MOOC to dominate. My program either works, or it doesn't.  

If a MOOC facilitates the kinds of content exchanges that seed and stimulate offline social gatherings -- pitches to VCs, or mock interviewing, or poetry, or dance routines, or photography, or music, or historical tours, or bird-watching trips, or snowblower-maintenance workshops -- then it has a better chance of fulfilling the longings of its students for connection and belonging.  

And, the more well-developed the surrounding Internet ecosystem (Wikipedia, discussion groups, Quora forums, and beyond) is around a topic, the less I need a Harvard professor, or even a Harvard grad student, to help me, however nuanced and alchemical the experience I miss might otherwise have been.  The prospect of schlepping to class or office hours on a cold, rainy November night has a way of diluting the urge to be there live in case something serendipitous happens.

Understanding how MOOCs win then also becomes a clue to understanding potential revenue models.  

If you can get accredited to offer a degree based in part or whole on MOOCs, you can charge for that degree, and gets students or the government to pay for it (Exhibit A: University of Phoenix).  That's hard, but as a variant of this, you can get hired by an organization, or a syndicate of organizations you organize, to produce tailored degree programs -- think corporate training programs on steroids -- that use MOOCs to filter and train students.  (Think "You, Student, pay for the 101-level stuff; if you pass you get a certificate and an invitation to attend the 201-level stuff that we fund; if you pass that we give you a job.")  

Funding can come directly, or be subsidized by sponsors and advertisers, or both.  

You can try to charge for content: if you produce a MOOC that someone else wants to include in a degree-based program, you can try to license it, in part or in whole.  

You can make money via the service angle, the way self-publishing firms support authors, with a variety of best-practice based production services.  Delivery might be offered via a freemium model -- the content might be free, but access to premium groups, with teaching assistant support, might come at a price.  You can also promote MOOCs -- build awareness, drive distribution, even simply brand  -- for a cut of the action, the way publishers and event promoters do.  

Perhaps in the not-too-distant future we'll get the Academic Upfront, in which Universities front a semester's worth of classes in a MOOC, then pitch the class to sponsors, the way TV networks do today. Or, maybe the retail industry also offers a window into how MOOCs will be monetized.  Today's retail environment is dominated by global brands (think professors as fashion designers) and big-box (plus Amazon) firms that dominate supply chains and distrubution networks.  Together, Brands and Retailers effectively act as filters: we make assumptions that the products on their shelves are safe, effective, reasonably priced, acceptably stylish, well-supported.  In exchange, we'll pay their markup.  This logic sounds a cautionary note for many schools: boutiques can survive as part of or at the edges of the mega-retailers' ecosystems, but small-to-mid-size firms reselling commodities get crushed.

Of course, these are all generic, unoriginal (see Ecclesiastes 1:9) speculations.  Successful revenue models will blend careful attention to segmenting target markets and working back from their needs, resources, and processes (certain models might be friendlier to budgets and purchasing mechanisms than others) with thoughtful in-the-wild testing of the ideas.  Monolithic executions with Neolithic measurement plans ("Gee, the focus group loved it, I can't understand why no one's signing up for the paid version!") are unlikely to get very far.  Instead, be sure to design with testability in mind (make content modular enough to package or offer a la carte, for example).  Maybe even use Kickstarter as a lab for different models!

PS Heller's brilliant sendup of automated essay grading

Postscript:

The MOOC professor perspective, via the Chronicle, March 2013


April 10, 2013

Fooling Around With Google App Engine @googlecloud

A simple experiment: the "Influence Reach Factor" Calculator. (Um, it just multiplies two numbers together.  But that's beside the point, which was to sort out what it's like to build and deploy an app to Google's App Engine, their cloud computing service.)

Answer: pretty easy.  Download the App Engine SDK.  Write your program (mine's in Python, code here, be kind, props and thanks to Bukhantsov.org for a good model to work from).  Deploy to GAE with a single click.

By contrast, let's go back to 1999.  As part of getting up to speed at ArsDigita, I wanted to install the ArsDigita Community System (ACS), an open-source application toolkit and collection of modules for online communities.  So I dredged up an old PC from my basement, installed Linux, then Postgres, then AOLServer, then configured all of them so they'd welcome ACS when I spooled it up (oh so many hours RTFM-ing to get various drivers to work).  Then once I had it at "Hello World!" on localhost, I had to get it networked to the Web so I could show it to friends elsewhere (this being back in the days before the cable company shut down home-served websites).  

At which point, cue the Dawn Of Man.

Later, I rented servers from co-los. But I still had to worry about whether they were up, whether I had configured the stack properly, whether I was virus-free or enrolled as a bot in some army of darkness, or whether demand from the adoring masses was going to blow the capacity I'd signed up for. (Real Soon Now, surely!)

Now, Real Engineers will say that all of this served to educate me about how it all works, and they'd be right.  But unfortunately it also crowded out the time I had to learn about how to program at the top of the stack, to make things that people would actually use.  Now Google's given me that time back.

Why should you care?  Well, isn't it the case that you read everywhere about how you, or at least certainly your kids, need to learn to program to be literate and effective in the Digital Age?  And yet, like Kubrick's monolith, it all seems so opaque and impenetrable.  Where do you start?  One of the great gifts I received in the last 15 years was to work with engineers who taught me to peel it back one layer at a time.  My weak effort to pay it forward is this small, unoriginal advice: start by learning to program using a high-level interpreted language like Python, and by letting Google take care of the underlying "stack" of technology needed to show your work to your friends via the Web.  Then, as your functional or performance needs demand (which for most of us will be rarely), you can push to lower-level "more powerful" (flexible but harder to learn) languages, and deeper into the stack.

January 09, 2013

My New Book: Pragmalytics

I've written a short book.  It's called "Pragmalytics: Practical Approaches to Marketing Analytics in the Digital Age".  It's a collection and synthesis of some of the things I've learned over the last several years about how to take better advantage of data (Big and little) to make better marketing decisions, and to get better returns on your investments in this area.  

The main point of the book is the need for orchestration.  I see too much of the focus today on "If we build It (the Big Data Machine, with some data scientist high priests to look after it), good things will happen."  My experience has been that you need to get "ecosystemic conditions" in balance to get value.  You need to agree on where to focus.  You need to get access to the data.  You need to have the operational flexibility to act on any insights.  And, you need to cultivate an "analytic marketer" mindset in your broader marketing team that blends perspectives, rather than cultivating an elite but blinkered cadre of "marketing analysts".  Over the next few weeks, I'll further outline some of what's in the book in a few posts here on my blog.

I'm really grateful to the folks who were kind enough to help me with the book.  The list includes: Mike Bernstein, Tip Clifton, Susan Ellerin, Ann Hackett, Perry Hewitt, Jeff Hupe, Ben Kline, Janelle Leonard, Sam Mawn-Mahlau, Bob Neuhaus, Judah Phillips, Trish Gorman Clifford, Rob Schmults, Michelle Seaton, Tad Staley, and my business partner, Jamie Schein.  As I said in the book, if you like any of it, they get credit for salvaging it.  The rest -- including several bits that even on the thousandth reading still aren't as clear as they should be, plus a couple of typos I need to fix -- are entirely my responsibility.

I'm also grateful to the wonderful firms and colleagues and clients I've had the good fortune to work for and with.  I've named the ones I can, but in general have erred on the side of respecting their privacy and confidentiality where the work isn't otherwise in the public domain.  To all of them: Thank You!

This field is evolving quickly in some ways, but there are also some timeless principles that apply to it.  So, there are bits of the book that I'm sure won't age well (including some that are already obsolete), but others that I hope might.  While I'm not one of those coveted Data Scientists by training, I'm deep into this stuff on a regular basis at whatever level is necessary to get a positive return from the effort.  So if you're looking for a book on selecting an appropriate regression technique, or tuning Hadoop, you won't find that here, but if you're looking for a book about how to keep all the balls in the air (and in your brain), it might be useful to you.  It's purposefully short -- about half the length of a typical business book.  My mental model was to make it about as thick as "The Elements of Style", since that's something I use a lot (though you probably won't think so!).  Plus, it's organized so you can jump in anywhere and snack as you wish, since this stuff can be toxic in large doses.

In writing it amidst all the Big Data craziness, I was reminded of Gandhi's saying (paraphrased) "First they ignore you... then they fight you, then you win."  Having been in the world of marketing analytics now for a while, it seems appropriate to say that "First they ignore you, then they hype you, then you blend in."   We're now in the "hype" phase.  Not a day goes by without some big piece in the media about Big Data or Data Scientists (who now have hit the highly symbolic "$300k" salary benchmark -- and last time we saw it, in the middle part of the last decade in the online ad sales world, was a sell signal  BTW).  "Pragmalytics" is more about the "blend in" phase, when all this "cool" stuff is more a part of the furniture that needs to work in harmony with the rest of the operation to make a difference.

"Pragmalytics" is available via Amazon (among other places).  If you read it please do me a favor and rate and review it, or even better, please get in touch if you have questions or suggestions for improving it.  FWIW, any earnings from it will go to Nashoba Learning Group (a school for kids with autism and related disorders).

Where it makes sense, I'd be very pleased to come talk to you and your colleagues about the ideas in the book and how to apply them, and possibly to explore working together.  Also, in a triumph of Hope over Experience, my next book (starting now) will be a collection and synthesis of interviews with other senior marketing executives trying to put Big Data to work.  So if you would be interested in sharing some experiences, or know folks who would, I'd love to talk.

About the cover:  it's meant to convey the harmonious convergence of "Mars", "Venus", and "Earth" mindsets: that is, a blend of analytic acuity, creativity and communication ability, and practicality and results-orientation that we try to bring to our work. Fellow nerds will appreciate that it's a Cumulative Distribution Function where the exponent is, in a nod to an example in the book, 1.007.

 

 

January 15, 2011

Lifetime Learning

A lovely Saturday:

Snow

A perfect day for some refreshment:

Howispentmyweekend2

Studying http://philip.greenspun.com/teaching/rdbms-iap-2011

Why?  (And, why now?)  Relational databases and SQL have been around for forty years.  Yet, no reasonable business person would disagree that:

1. it's useful to know how to use spreadsheet software, both to DIY and manage others who do;

2. there's much more information out there today;

3. harnessing this information is not only advantageous but essential;

4. more powerful tools like database management systems are necessary for this.

Therefore, business people should know a little bit about these more powerful tools, to continue to be considered reasonable.

January 26, 2010

What's NYT.com Worth To You, Part II

OK, with the response curve for my survey tailing off, I'm calling it.  Here, dear readers, is what you said (click on the image to enlarge it):

Octavianworld nyt com paid content survey

(First, stats: with ~40 responses -- there are fewer points because of some duplicate answers -- you can be 95% sure that answers from the rest of the ~20M people that read the NYT online would be +/- 16% from what's here.)

90% of respondents would pay at least $1/month, and several would pay as much as $10/month. And, folks are ready to start paying after only ~2 articles a day.  Pretty interesting!  More latent value than I would have guessed.  At the same time, it's also interesting to note that no one went as high as the $14 / month Amazon wants to deliver the Times on the Kindle. (I wonder how many Kindle NYT subs are also paper subs getting the Kindle as a freebie tossed in?)

Only a very few online publishers aiming at "the general public" will be able to charge for content on the web as we have known it, or through other newer channels.  Aside from highly-focused publishers whose readers can charge subscriptions to expense accounts, the rest of the world will scrape by on pennies from AdSense et al

But, you say, what about the Apple Tablet (announcement tomorrow! details yesterday), and certain publishers' plans for it?  I see several issues:

  • First, there's the wrestling match to be had over who controls the customer relationship in Tabletmediaworld. 
  • Second, I expect the rich, chocolatey content (see also this description of what's going in R&D at the Times) planned for this platform and others like it to be more expensive to produce than what we see on the web today, both because a) a greater proportion of it will be interactive (must be, to be worth paying for), but also because b) producing for multiple proprietary platforms will also drive costs up (see for example today's good article in Ad Age by Josh Bernoff on the "Splinternet"). 
  • Third, driving content behind pay walls lowers traffic, and advertising dollars with it, raising the break-even point for subscription-based business models. 
  • Fourth, last time I checked, the economy isn't so great. 
The most creative argument I've seen "for" so far is that pushing today's print readers/ subscribers to tablets will save so much in printing costs that it's almost worth giving readers tablets (well, Kindles anyway) for free -- yet another edition of the razor-and-blade strategy, in "green" wrapping perhaps.

The future of paid content is in filtering information and increasing its utility.  Media firms that deliver superior filtering and utility at fair prices will survive and thrive.  Among its innovations in visual displays of information (which though creative, I'd guess have a limited monetization impact) is evidence that the Times agrees with this, at least in part (from the article on Times R&D linked to above):

When Bilton swipes his Times key card, the screen pulls up a personalized version of the paper, his interests highlighted. He clicks a button, opens the kiosk door, and inside I see an ordinary office printer, which releases a physical printout with just the articles he wants. As it prints, a second copy is sent to his phone.

The futuristic kiosk may be a plaything, but it captures the essence of R&D’s vision, in which the New York Times is less a newspaper and more an informative virus—hopping from host to host, personalizing itself to any environment.

Aside from my curiosity about the answers to the survey questions themselves, I had another reason for doing this survey.  All the articles I saw on the Times' announcement that it would start charging had the usual free-text commenting going.  Sprinkled through the comments were occasional suggestions from readers about what they might pay, but it was virtually impossible to take any sort of quantified pulse on this issue in this format.  Following "structured collaboration" principles, I took five minutes to throw up the survey to make it easy to contribute and consume answers.  Hopefully I've made it easier for readers to filter / process the Times' announcement, and made the analysis useful as well -- for example, feel free to stick the chart in your business plan for a subscription-based online content business ;-)  If anyone can point me to other, larger, more rigorous surveys on the topic, I'd be much obliged.

The broader utility of structuring the data capture this way is perhaps greatest to media firms themselves:  indirectly for ad and content targeting value, and perhaps because once you have lots of simple databases like this, it becomes possible to weave more complex queries across them, and out of these queries, some interesting, original editorial possibilities.

Briefly considered, then rejected for its avarice and stupidity: personalized pricing offers to subscribe to the NYT online based on how you respond to the survey :-)

Postscript: via my friend Thomas Macauley, NY (Long Island) Newsday is up to 35 paid online subs.

September 30, 2009

Action Analytics Symposium Recap by Barry Dahl

Barry Dahl wrote a prompt and thorough recap of the Action Analytics Symposium hosted by Minnesota State Colleges and Universities and Capella University I participated in last week.

September 15, 2009

Adobe + Omniture: Pragmalytically Perfect Sense

Big news (via, in my case, Eric Peterson's "Web Analytics Forum" on Yahoo!): Adobe's buying Omniture

Simple logic:

  • Adobe makes great tools for developing custom dashboards and other data visualization apps.  I know because in one engagement this summer, we've worked with a terrific client and another (also terrific) engineering firm to build a Flex-based prototype of an advanced predictive analytics application.  But prototyping is easy, tying a front end to a working, real-world analytics data model is much harder.
  • Omniture leads the pack of web analytics platform vendors, who all have more features and capabilities in their left pinkies than many of us could dream of in six lifetimes.  But exposing mere mortals to the interfaces these leading firms provide is like showing kryptonite to  Joe / Jane Superexecutive.  As analytics get more complex, it's even more important to focus on key questions and expose only the data / views on that data that illuminate those key questions.
  • So if you believe that that this web / digital / multichannel analytics thing has legs, then putting these two firms together and working both ends to the middle faster than might otherwise have happened is a smart thing to do.
  • The other reason to do this is to anticipate the trend in "custom reporting" and "advanced segmentation" capabilities in the "lower-end" analytics offerings (e.g., GA) from folks like Google.  I've been using these capabilities recently, and they get you a meaningful way, eroding the value of higher-end offerings on both the front (Adobe) and middle-back (Omniture) ends.

September 08, 2009

Action #Analytics Symposium

I'll be in St. Paul, Minnesota on September 21-23, presenting at the "Action Analytics: Setting A National Agenda" Symposium hosted by Minnesota State Colleges and Universities (MNSCU) and by Capella University.  (Notes on the conference to follow.)

June 01, 2009

The Future Of Paid Content

Some are trying to put the "free content" genie back into the bottle and return to a pay model of some sort.  

This will be tough.  One problem is that (most, though not all) publishers have taught us to expect a lot for "free".  Another is that the world is awash in content, so if you're a publisher, hiding yours behind a pay wall just makes room for someone else to try to have his (ad-supported) day in the sun.  Snobs contend, "Water everywhere, but only a few drops (ours) worth drinking."   Maybe, but with production and communication costs low, and lots of people out there, there are enough exceptions to disprove the rule.  Regardless, focusing on these issues misses the point about where the value for the average reader is today.  The future of paid content lies not in the content itself, but in serving two adjacent needs:  filtering what's relevant, and helping audiences to use it productively.

Let's look at filtering first, and let's take Twitter as an example.  At north of 20 million users, and even with a churn rate fluctuating around 50%, you can't ignore it (and recent research suggests business people are paying attention).  The challenge is finding useful tweeters. (Digerati friends please help -- is that what one who tweets is called?  Or, is it "tweeps", or "tweeple", or some such?)  There are some early stage services probing at this: besides Twitter Search (formerly Summize / monetized via... TBD) and its upcoming "Discovery Engine", there's Hashtags (search by / subscribe to... wait for it... hashtags; monetized via tip jar),  Microplaza (tweets from people you follow; monetized via subsidy from parent co, which is an enterprise-focused collaboration platform ASP), Tweetmeme (Digg for Twitter; monetized via sponsorships), Wefollow (like the Yellow Pages of Twitter), plus a half a dozen more I've heard of and tried and doubtless dozens I haven't (see here for more).  (Michael Yoon and I are working on one, stay tuned.)   Is some refined, scalable version of one or more of these systems worth $2-3 bucks a month to some reasonable sub-segment of the Web-using public?  Related memo to Google: it would be worth $2-3 month to me to have Google suggest good posts from my blogroll (I use Google Reader) based on parsing my emails, which it currently does to serve me ads in Gmail.

Second, and perhaps potentially far more lucrative, are services to help audiences do stuff with content.  Be an affiliate for schools that sell courses related to the content, for example.  Last time I checked, the market for education, particularly online / just-in-time education, was growing at a healthy clip.  More simply, offer lectures by content authors / editors and sell tickets to these events, or be an affiliate for others who do that with your content. 

My favorite creative approach to segmenting audience needs and monetizing accordingly comes from the musician Jill Sobule, whose http://jillsnextrecord.com/ (scroll down to "A Message From Jill") does a nice job of unpacking all the reasons why folks engage with her music, and then pricing related offers accordingly.  Folks wonder about Myspace's future, what with the Google deal expiring soon and all.  I wonder:  does Jill's approach suggest one path might be to leapfrog Eventful and function as an uber-agent for the bands making their homes on Myspace?  

February 28, 2008

LMS Usability Review

In all the years that I've been involved in the OpenACS/ .LRN community, it's been my experience that we get high marks for the architectural sophistication and power of the toolkit, but that we get dinged when it comes to usability, especially vs. Moodle, the latest darling of the LMS world.  So, with that as a backdrop, check out this study presented by Emmanuelle Raffenne of Spain's Universidad de la Educacion a la Distancia (UNED) at the recent .LRN global user meetings in Guatemala.   Congratulations to all the members of the community who have been working very hard on this front!

More to follow on the conference...

Continue reading "LMS Usability Review" »